On Optimal Tensor Product Approximation

F.-J. Delvos and H. Posdorf
Universität Siegen, Fachbereich Mathematik-Naturwissenschaften D-5900 Siegen 21, and Universität Bochum, Rechenzentrum D-4630 Bochum, Germany

Communicated by Arthur Sard
Received March 5, 1975

Introduction

In connection with the finite element method, tensor product schemes of interpolation have widely been used [3,6,13]. It is the purpose of this paper to treat these interpolation methods in the abstract setting of the theory of optimal approximation developed by Sard [10-12]. This approach enables us to compute explicit expressions for the norms of certain error functionals.

1. Optimal Interpolation

The theory of optimal interpolation as a special case of the theory of optimal approximation in the sense of Sard [10-12] is characterized by the tuple

$$
\begin{equation*}
(X, Y, Z ; U, F) \tag{1.1}
\end{equation*}
$$

Here X, Y, Z are (separable, complex) Hilbert spaces and

$$
U: X \rightarrow Y, \quad F: X \rightarrow Z
$$

are continuous linear mappings. Let us assume that the completeness condition holds [11]. Thus the Hermitian form

$$
\begin{equation*}
((x, y))=(U x, U y)+(F x, F y) \tag{1.2}
\end{equation*}
$$

$(x, y \in X)$ defines a scalar product on X, which induces the original topology on X.

We define the orthogonal projector P in the space $(X,((\cdot, \cdot)))$ by $\operatorname{Ker} P=$ Ker $F . P$ is called the spline projector corresponding to (1.1). The following theorem shows that the problem of optimal interpolation can be solved by P.

Theorem 1.1 (Sard [11]). For any $x \in X$ the element $\xi=P x$ is the unique element among all $y \in X$ satisfying $F y=F x$, which minimizes the functional

$$
y \rightarrow\|U y\| .
$$

Remark 1.2. If

$$
\begin{equation*}
\operatorname{Ker} U=\operatorname{Ker} F^{\perp}, \tag{1.3}
\end{equation*}
$$

the tuple $(X, Y, Z ; U, F)$ describes a problem of standard interpolation. In this case we have $F \xi=F x$ and $U \xi=0$. Because of (1.3), the sets $\operatorname{Im} U$ and $\operatorname{Im} F$ are complete. Accordingly, in the case of standard interpolation we may and shall assume that $\operatorname{Im} U=Y$ and $\operatorname{Im} F=Z$. Now by Banach's theorem there exists a unique continuous linear mapping $T_{F}: Y \rightarrow X$ satisfying $T_{F} U=\mathrm{id}_{X}-P$ and $U T_{F}=\mathrm{id}_{Y}$, where $\mathrm{id}_{X}, \mathrm{id}_{Y}$ denote the identities on X, and Y, respectively. In this context we can consider the decomposition

$$
\begin{equation*}
x=P x+T_{F}(U x) \tag{1.4}
\end{equation*}
$$

$(x \in X)$ as the generalized Taylor formula of the problem of standard interpolation ($X, Y, Z ; U, F$).

If not mentioned otherwise, let X in the sequel be equipped with scalar product (1.2).

Theorem 1.3. Let $G: X \rightarrow W$ be a continuous, surjective, linear mapping from X to the (separable, complex) Hilbert space W which satisfies

$$
\begin{equation*}
\operatorname{Ker} G \subset \operatorname{Ker} F \text {. } \tag{1.5}
\end{equation*}
$$

Then the tuple

$$
\begin{equation*}
(X, Y, W ; U, G) \tag{1.6}
\end{equation*}
$$

defines an optimal interpolation problem and the orthogonal projector Q in $(X,((\cdot, \cdot)))$ defined by

$$
\begin{equation*}
\operatorname{Ker} Q=\operatorname{Ker} G \tag{1.7}
\end{equation*}
$$

is the spline projector for problem (1.6).
Proof. By (1.7), the equations

$$
\operatorname{Ker} Q=\operatorname{Im}\left(\mathrm{id}_{x}-Q\right)=\operatorname{Ker} G
$$

hold, and thus the equation

$$
\begin{equation*}
G Q=G \tag{1.8}
\end{equation*}
$$

is valid too. Furthermore, Banach's theorem guarantees the existence of a continuous linear mapping $G^{-1}: W \rightarrow X$ satisfying

$$
\begin{equation*}
G^{-1} G=Q . \tag{1.9}
\end{equation*}
$$

From these premises we infer the existence of a constant $c>0$ such that

$$
\|G x\| \geqslant c \cdot\|Q x\| \geqslant c \cdot\|P x\|
$$

$(x \in X)$. The second inequality is an immediate consequence of $\operatorname{Im} Q \supset \operatorname{Im} P$, whereas the first follows by (1.9).

Now we have

$$
\begin{aligned}
\|G x\|^{2}+\|U x\|^{2} & \geqslant \min (c, 1) \cdot\left\{\|P x\|^{2}+\|U x\|^{2}\right\} \\
& =\min (c, 1) \cdot\|x\|^{2}
\end{aligned}
$$

Thus problem (1.6) defines an optimal interpolation problem in the sense of Sard and we have established the first part of our statement. Because of (1.8) we merely have to verify that the projector Q defined by (1.7) is an orthogonal projector relative to the scalar product

$$
\begin{equation*}
((x, y))^{\prime}=(U x, U y)+(G x, G y) . \tag{1.10}
\end{equation*}
$$

Now relation (1.5) yields

$$
F Q y=F y
$$

and

$$
(U Q y, U(y-Q y))=(Q y, y-Q y)=0 .
$$

Hence

$$
((Q y, y-Q y))^{\prime}=0 .
$$

Thus Q is an orthogonal projector relative to (1.10).

2. Optimal Tensor Product Interpolation

This section is concerned, first, with the description of the simplest case of optimal interpolation in $X_{1} \otimes X_{2}$, the standard tensor product interpolation. Among other topics, a suitable Hilbert space structure on $X_{1} \otimes X_{2}$ is discussed. (For tensor products of Hilbert spaces and linear mappings we refer to [1, pp. 39-50].)

Let us start with two standard interpolation problems

$$
\begin{equation*}
\left(X_{j}, Y_{j}, Z_{j} ; U_{j}, F_{j}\right) \quad(j=1,2) . \tag{2.1}
\end{equation*}
$$

In particular,

$$
\operatorname{Ker} U_{j}=\operatorname{Ker} F_{j}^{\perp} \quad(j=1,2)
$$

Since X_{1} and X_{2} are equipped with the scalar product induced by (2.1) the scalar product on $X_{1} \otimes X_{2}$ is of the form

$$
\begin{align*}
(x, y)= & \left(F_{1} \otimes F_{2}(x), F_{1} \otimes F_{2}(y)\right) \\
& +\left(F_{1} \otimes U_{2}(x), F_{1} \otimes U_{2}(y)\right) \\
& +\left(U_{1} \otimes F_{2}(x), U_{1} \otimes F_{2}(y)\right) \\
& +\left(U_{1} \otimes U_{2}(x), U_{1} \otimes U_{2}(y)\right) \tag{2.2}
\end{align*}
$$

$\left(x, y \in X_{1} \otimes X_{2}\right)$. Put [5]

$$
V=F_{1} \otimes U_{2} \times U_{1} \otimes F_{2} \times U_{1} \otimes U_{2}
$$

The problem of standard tensor product interpolation is characterized by the tuple

$$
\begin{equation*}
\left(X_{1} \otimes X_{2}, Z_{1} \otimes Y_{2} \times Y_{1} \otimes Z_{2} \times Y_{1} \otimes Y_{2}, Z_{1} \otimes Z_{2} ; V, F_{1} \otimes F_{2}\right) \tag{2.3}
\end{equation*}
$$

It is immediate that the completeness condition holds for (2.3). Let P_{j} ($j=1,2$) denote the spline-projectors corresponding to (2.1). This leads us to

Theorem 2.1. Let $x \in X_{1} \otimes X_{2}$. Then $\xi=P_{1} \otimes P_{2}(x)$ is the unique element of $X_{1} \otimes X_{2}$ satisfying the relations

$$
F_{1} \otimes F_{2}(\xi)=F_{1} \otimes F_{2}(x), \quad V(\xi)=0
$$

Proof. As is well known, $P_{1} \otimes P_{2}$ is an orthogonal projector on $X_{1} \otimes X_{2}$ (equipped with scalar product (2.2)) which satisfies

$$
\left(F_{1} \otimes F_{2}\right)\left(P_{1} \otimes P_{2}\right)=F_{1} \otimes F_{2}
$$

and

$$
V\left(P_{1} \otimes P_{2}\right)=0
$$

This proves the theorem. (Note that [5, pp. 62-67]

$$
\left.\operatorname{Im} P_{1} \otimes P_{2}=\operatorname{Ker} F_{1} \otimes F_{2}^{\perp}=\operatorname{Ker} V .\right)
$$

In the present case of standard interpolation we may and shall assume that

$$
\begin{align*}
\operatorname{Im} U_{j}=Y_{j} & (j=1,2) \tag{2.4}\\
\operatorname{Im} F_{j}=Z_{j} & (j=1,2) \tag{2.5}
\end{align*}
$$

An immediate consequence is $\operatorname{Im} F_{1} \otimes F_{2}=Z_{1} \otimes Z_{2}$, and we are able to prove the following theorem.

Theorem 2.2. Under assumptions (2.4) and (2.5),

$$
\operatorname{Im} V=Z_{1} \otimes Y_{2} \times Y_{1} \otimes Z_{2} \times Y_{1} \otimes Y_{2} .
$$

Proof. Because of (2.4) and (2.5) there exist continuous linear mappings

$$
\begin{array}{ll}
T_{F_{j}}: Y_{j} \rightarrow X_{j} & (j=1,2), \\
T_{U_{j}}: Z_{j} \rightarrow X_{j} & (j=1,2),
\end{array}
$$

which satisfy

$$
\begin{array}{ll}
T_{F_{j}} U_{j}=\mathrm{id}_{X_{j}}-P_{j} & (j=1,2), \\
T_{U_{j}} F_{j}=P_{j} & (j=1,2) .
\end{array}
$$

By defining the continuous linear mapping

$$
\begin{gathered}
T_{F_{1} \otimes F_{2}}: Z_{1} \otimes Y_{2} \times Y_{1} \otimes Z_{2} \times Y_{1} \otimes Y_{2} \rightarrow X_{1} \otimes X_{2}, \\
T_{F_{1} \otimes F_{2}}\left(x_{01}, x_{10}, x_{11}\right)=T_{U_{1}} \otimes T_{F_{2}}\left(x_{01}\right)+T_{F_{1}} \otimes T_{U_{2}}\left(x_{10}\right)+T_{F_{1}} \otimes T_{F_{2}}\left(x_{11}\right) \\
V T_{F_{1} \otimes F_{2}}=\operatorname{id}_{z_{1} \otimes Y_{2} \times Y_{1} \otimes z_{2} \times Y_{1} \otimes Y_{2}}, \\
T_{F_{1} \otimes F_{2}} V=\operatorname{id}_{x_{1} \otimes X_{2}}-P_{1} \otimes P_{2} .
\end{gathered}
$$

The theorem follows from the first statement.
The second statement implies a decomposition similar to (1.4),

$$
x=P_{1} \otimes P_{2}(x)+T_{F_{1} \otimes F_{2}}(V x)
$$

($x \in X_{1} \otimes X_{2}$), a relation which can be considered as the generalized Taylor formula of the problem of standard tensor product interpolation (2.3).

Theorem 2.3. Let

$$
G_{j}: X_{j} \rightarrow W_{j} \quad(j=1,2)
$$

be continuous linear mappings from $X_{j}(j=1,2)$ onto the (separable, complex) Hilbert spaces $W_{j}(j=1,2)$ satisfying

$$
\operatorname{Ker} G_{j} \subset \operatorname{Ker} F_{j} \quad(j=1,2) .
$$

Then the tuple

$$
\begin{equation*}
\left(X_{1} \otimes X_{2}, Z_{1} \otimes Y_{2} \times Y_{1} \otimes Z_{2} \times Y_{1} \otimes Y_{2}, W_{1} \otimes W_{2} ; V, G_{1} \otimes G_{2}\right) \tag{2.6}
\end{equation*}
$$

defines a problem of optimal tensor product interpolation. Furthermore, let $Q_{j}(j=1,2)$ be the orthogonal projectors of $X_{j}(j=1,2)$ with inner products (1.2) defined by

$$
\operatorname{Ker} Q_{j}=\operatorname{Ker} G_{j} \quad(j=1,2) .
$$

Then the spline projector corresponding to (2.6) is given by $Q=Q_{1} \otimes Q_{2}$.

Proof. As in the proof of Theorem 1.3, there exist continuous linear mappings

$$
G_{j}^{-1}: W_{j} \rightarrow X_{j} \quad(j=1,2)
$$

which satisfy

$$
G_{j}^{-1} G_{j}=Q_{j} \quad(j=1,2) .
$$

We deduce the relations

$$
\begin{aligned}
\left(G_{1}^{-1} \otimes G_{2}^{-1}\right)\left(G_{1} \otimes G_{2}\right) & =Q_{1} \otimes Q_{2}, \\
\left(G_{1} \otimes G_{2}\right)\left(Q_{1} \otimes Q_{2}\right) & =G_{1} \otimes G_{2},
\end{aligned}
$$

which imply

$$
\begin{aligned}
\text { Ker } Q_{1} \otimes Q_{2} & =\text { Ker } G_{1} \otimes G_{2}, \\
\operatorname{Im} Q_{1} \otimes Q_{2} & =\operatorname{Ker} G_{1} \otimes G_{2}{ }^{\perp} .
\end{aligned}
$$

In view of Theorem 1.3, we now merely have to prove

$$
\operatorname{Ker} G_{1} \otimes G_{2} \subset \operatorname{Ker} F_{1} \otimes F_{2} .
$$

For every $x \in X_{1} \otimes X_{2}$ with

$$
G_{1} \otimes G_{2}(x)=0
$$

we have

$$
Q_{1} \otimes Q_{2}(x)=0 .
$$

As

$$
\left(F_{1} \otimes F_{2}\right)\left(Q_{1} \otimes Q_{2}\right)=F_{1} \otimes F_{2},
$$

it follows that

$$
\operatorname{Ker} G_{1} \otimes G_{2} \subset \operatorname{Ker} F_{1} \otimes F_{2} .
$$

By Theorem 1.3, the completeness condition for (2.6) holds.

3. Optimal Approximation on Linear Functionals

We will now study the problem of optimal approximation of linear functionals. Therefore we assume $L \in X^{*}$. As in [11] we define the class of admissible approximations of L for the problem ($X, Y, W ; U, G$) as

$$
\sigma(L)=\left\{E G: E \in W^{*}, \operatorname{Ker} U \subset \operatorname{Ker}(L-E G)\right\} .
$$

Because $L Q=L G^{-1} G \in O(L), O(L)$ is not empty.

Lemma 3.1. For every $E G \in C H(L)$ we have

$$
\begin{equation*}
L-E G=K_{E} U \tag{3.1}
\end{equation*}
$$

with $K_{E} \in Y^{*}$ satisfying

$$
\begin{equation*}
\|L-E G\|=\left\|K_{E}\right\| \tag{3.2}
\end{equation*}
$$

Proof. For (3.1) we refer to [11]. Let λ denote the representer (dual) of $L-E G:(L-E G)(x)=(x, \lambda)$. Since $\operatorname{Ker} U=\operatorname{Im} P \subset \operatorname{Ker}(L-E G)$, we obtain $P \lambda=0$. Taking into account Ker $P=\operatorname{Ker} F$, this implies $F \lambda=0$, and finally, $\|L-E G\|=\|U \lambda\|$. On the other hand we have

$$
(L-E G)(x)=(U x, U \lambda)=K_{E}(U x)
$$

The relation Im $U=Y$ implies

$$
\left\|K_{E}\right\|=\|U \lambda\|=\|L-E G\|
$$

This proves (3.2).
Because of (3.1) we have

$$
|L(x)-E G(x)| \leqslant\left\|K_{E}\right\| \cdot\|U x\|
$$

($x \in X$).
This inequality motivates the following definition of optimal approximation of L. The functional $E_{0} G \in \mathscr{O}(L)$ is called an optimal approximation of L (with respect to G and U) iff $\left\|K_{E_{0}}\right\| \leqslant\left\|K_{E}\right\|(E G \in O l(L))$. Taking into account (3.2) this is equivalent to

$$
\left\|L-E_{0} G\right\|=\min _{E G \in \mathscr{O}(L)}\|L-E G\|
$$

The following theorem shows how to calculate the optimal approximation.
Theorem 3.1 (Sard [11]). The optimal approximation of L is given by $E_{0} G=L Q\left(E_{0}=L G^{-1}\right)$.

We now consider the optimal approximation of linear functionals of the special form $L=L_{1} \otimes L_{2}$, with $L_{j} \in X_{j}^{*}(j=1,2)$ for problem (2.6). An application of Theorems 3.1 and 2.3 yields immediately the following result.

TheOrem 3.2. The optimal approximation of $L_{1} \otimes L_{2}$ (with respect to $G_{1} \otimes G_{2}$ and $\left.V\right)$ is given by

$$
E_{0}\left(G_{1} \otimes G_{2}\right)=L_{1} Q_{1} \otimes L_{2} Q_{2}
$$

with

$$
E_{0}=L_{1} G_{1}^{-1} \otimes L_{2} G_{2}^{-1}
$$

Our final purpose is to derive an explicit expression for the norm

$$
\left\|L_{1} \otimes L_{2}-L_{1} Q_{1} \otimes L_{2} Q_{2}\right\|
$$

Theorem 3.3. The norm of the remainder functional $L_{1} \otimes L_{2}-L_{1} Q_{1} \otimes$ $L_{2} Q_{2}$ is given by

$$
\begin{aligned}
\| L_{1} \otimes & L_{2}-L_{1} Q_{1} \otimes L_{2} Q_{2} \|^{2} \\
= & \left\|L_{1}-L_{1} Q_{1}\right\|^{2} \cdot\left\|L_{2} Q_{2}\right\|^{2}+\left\|L_{1} Q_{1}\right\|^{2} \cdot\left\|L_{2}-L_{2} Q_{2}\right\|^{2} \\
\quad & \quad\left\|L_{1}-L_{1} Q_{1}\right\|^{2} \cdot\left\|L_{2}-L_{2} Q_{2}\right\|^{2} .
\end{aligned}
$$

Proof. The proof uses the following
Lemma 3.2. Let $L \in X^{*}$ and A, B be orthogonal projectors on X, which satisfy either one (and hence both) of the orthogonal relations $A B=B A=0$. Then

$$
\|L A+L B\|^{2}=\|L A\|^{2}+\|L B\|^{2} .
$$

Proof. In general we have $(L A+L B)(x)=(x, A \eta)+(x, B \eta)$ with η the representer (dual) of L. Since $(A \eta, B \eta)=0$,

$$
\|A \eta+B \eta\|^{2}=\|A \eta\|^{2}+\|B \eta\|^{2} .
$$

This implies the lemma.
If we now consider the decomposition

$$
\begin{aligned}
L_{1} \otimes L_{2}-L_{1} Q_{1} \otimes L_{2} Q_{2}= & L_{1} \otimes L_{2}\left\{\left(\mathrm{id}_{x_{1}}-Q_{1}\right) \otimes Q_{2}+Q_{1} \otimes\left(\mathrm{id}_{x_{2}}-Q_{2}\right)\right. \\
& \left.+\left(\mathrm{id}_{x_{1}}-Q_{1}\right) \otimes\left(\mathrm{id}_{x_{2}}-Q_{2}\right)\right\}
\end{aligned}
$$

our theorem is verified by the validity of the orthogonal relations

$$
\begin{array}{r}
\left(\left(\mathrm{id}_{X_{1}}-Q_{1}\right) \otimes Q_{2}\right)\left(Q_{1} \otimes\left(\mathrm{id}_{X_{2}}-Q_{2}\right)\right)=0 \\
\left(\left(\mathrm{id}_{X_{1}}-Q_{1}\right) \otimes Q_{2}\right)\left(\left(\mathrm{id}_{X_{1}}-Q_{1}\right) \otimes\left(\mathrm{id}_{X_{2}}-Q_{2}\right)\right)=0 \\
\left(Q_{1} \otimes\left(\mathrm{id}_{X_{2}}-Q_{2}\right)\right)\left(\left(\mathrm{id}_{X_{1}}-Q_{1}\right) \otimes\left(\mathrm{id}_{X_{2}}-Q_{2}\right)\right)=0,
\end{array}
$$

and an application of Lemma 3.2 and Theorem 3.1.

References

1. Ju. M. Berezanskij, "Expansions in Eigenfunctions of Selfadjoint Operators," American Mathematical Society, Providence, R.I., 1968.
2. G. Birkhoff and C. R. de Boor, Piecewise polynomial interpolation and approximation, in "Approximation of Functions" (H. L. Garabedian, Ed.), Elsevier, Amsterdam/New York, 1965.
3. G. Birkhoff, M. H. Schultz, and R. S. Varga, Piecewise Hermite interpolation in one and two variables with application to partial differential equations, Numer. Math. 11 (1968), 232-256.
4. F.-J. Delvos, On surface interpolation, J. Approximation Theory 15 (1975), 209-213.
5. F.-J. Delvos and K. H. Schlosser, Das Tensorproduktschema von Spline-Systemen, in "Spline-Funktionen. Vorträge und Aufsätze" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.), pp. 59-73, Bibliographisches Institut, Mannheim/Wien/Zürich, 1974.
6. W. J. Gordon, Distributive lattices and approximation of multivariate functions, in "Approximation with Special Emphasis on Spline Functions" (I. J. Schoenberg, Ed.), pp. 223-277, Academic Press, New York, 1969.
7. W. Haussmann and H. J. Münch, Topological spline systems, in "Spline-Funktionen. Vorträge und Aufsätze" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.), pp. 109127, Bibliographisches Institut, Mannheim/Wien/Zürich, 1974.
8. K. Rirter, Two dimensional spline functions and best approximation of linear functionals, J. Approximation Theory 3 (1970), 352-368.
9. A. SARD, "Linear Approximation," American Mathematical Society, Providence, R. I., 1963.
10. A. SARD, Optimal approximation, J. Functional Analysis 1 (1967), 222-244; 2 (1968), 368-369.
11. A. SARD, Approximation based on nonscalar observations, J. Approximation Theory J. 8 (1973), 315-334.
12. A. Sard, Instances of generalized splines, in "Spline-Funktionen. Vorträge und Aufsätze" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.), pp. 215-241, Bibliographisches Institut, Mannheim/Wien/Zürich, 1974.
13. M. H. Schultz, "Spline Analysis," Prentice-Hall, Englewood Cliffs, N.J., 1973.
