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INTRODUCTION

In connection with the finite element method, tensor product schemes of
interpolation have widely been used [3, 6, 13]. It is the purpose of this paper
to treat these interpolation methods in the abstract setting of the theory of
optimal approximation developed by Sard [10-12]. This approach enables us
to compute explicit expressions for the norms of certain error functionals.

1. OPTIMAL INTERPOLATION

The theory of optimal interpolation as a special case of the theory of
optimal approximation in the sense of Sard [10-12] is characterized by the
tuple

(X, Y, Z; U, F)

Here X, Y, Z are (separable, complex) Hilbert spaces and

(1.1)

U:X--+Y, F:X--+Z

are continuous linear mappings. Let us assume that the completeness condi
tion holds [11]. Thus the Hermitian form

((x, y)) = (Ux, Uy) + (Fx, Fy) (1.2)

(x, Y E X) defines a scalar product on X, which induces the original topology
on X.

We define the orthogonal projector P in the space (X, ((-, .))) by Ker P =
Ker F. P is called the spline projector corresponding to (1.1). The following
theorem shows that the problem ofoptimal interpolation can be solved by P.
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THEOREM 1.1 (Sard [11]). For any x E X the element g = Px is the unique
element among all y E X satisfying Fy = Fx, which minimizes the functional

y-IIUyll.

Remark 1.2. If

Ker U = KerF\ (1.3)

the tuple (X, Y, Z; U, F) describes a problem of standard interpolation. In
this case we have Fg = Fx and ug = O. Because of (1.3), the sets 1m U and
1m F are complete. Accordingly, in the case of standard interpolation we may
and shall assume that 1m U = Yand 1m F = Z. Now by Banach's theorem
there exists a unique continuous linear mapping TF : Y -+ X satisfying
TFU = idx - P and UTI' = idy , where idx , idy denote the identities on X,
and Y, respectively. In this context we can consider the decomposition

x = Px + TF(Ux) (1.4)

(x E X) as the generalized Taylor formula of the problem of standard inter
polation (X, Y, Z; U, F).

If not mentioned otherwise, let X in the sequel be equipped with scalar
product (1.2).

THEOREM 1.3. Let G : X -+ W be a continuous, surjective, linear mapping
from X to the (separable, complex) Hilbert space W which satisfies

Then the tuple

Ker GC Ker F.

(X, Y, W; U, G)

(1.5)

(1.6)

defines an optimal interpolation problem and the orthogonal projector Q in
(X, «', .») defined by

Ker Q = KerG

is the spline projector for problem (1.6).

Proof By (1.7), the equations

Ker Q = Im(idx - Q) = Ker G

hold, and thus the equation

GQ =G

(1.7)

(1.8)
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is valid too. Furthermore, Banach's theorem guarantees the existence of a
continuous linear mapping G-I : W -+ X satisfying

G-IG = Q.

From these premises we infer the existence of a constant e > 0 such that

II Gx II ~ e • II Qx II ~ e . II Px II

(1.9)

(x E X). The second inequality is an immediate consequence of 1m Q :J 1m P,
whereas the first follows by (1.9).

Now we have

II Gx 11 2 + II Ux 11 2
~ minCe, 1) . {II Px 11 2 + [I Ux 11 2}

= minCe, 1) . II X 11
2

•

Thus problem (1.6) defines an optimal interpolation problem in the sense of
Sard and we have established the first part of our statement. Because of (1.8)
we merely have to verify that the projector Qdefined by (1.7) is an orthogonal
projector relative to the scalar product

«x, y))' = (Ux, Uy) + (Gx, Gy).

Now relation (1.5) yields

FQy =Fy

and

(UQy, U(y - Qy)) = (Qy, y - Qy) = O.

Hence

«Qy, y - Qy))' = O.

Thus Q is an orthogonal projector relative to (LlO).

2. OPTIMAL TENSOR PRODUCT INTERPOLATION

(LlO)

This section is concerned, first, with the description of the simplest case of
optimal interpolation in Xl @ X 2 , the standard tensor product interpolation.
Among other topics, a suitable Hilbert space structure on Xl @ X 2 is dis
cussed. (For tensor products of Hilbert spaces and linear mappings we refer
to [1, pp. 39-50].)

Let us start with two standard interpolation problems

(j = 1,2). (2.1)
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In particular,
Ker Vj = Ker F/ (j = 1,2).

Since Xl and X 2 are equipped with the scalar product induced by (2.1) the
scalar product on Xl ® X 2 is of the form

(x, y) = (FI ® F2(x), FI ® F2(y»

+ (FI ® V2(x), F I ® V2(y»

+ (VI ® F2(x), VI ® F2(y»

+ (VI ® U2(x), VI ® V 2(y» (2.2)

v = F l ® V 2 X VI ® F2 X VI ® V 2 •

The problem of standard tensor product interpolation is characterized by the
tuple

(Xl ® X 2 , Zl ® Y2 X YI ® Z2 X Yl ® Y2 , Zl ® Z2 ; V, Fl ® F2). (2.3)

It is immediate that the completeness condition holds for (2.3). Let Pj

(j = 1, 2) denote the spline-projectors corresponding to (2.1). This leads us to

THEOREM 2.1. Let x E Xl ® X 2 • Then g = PI ® P2(x) is the unique
element of Xl ® X 2 satisfying the relations

V(g) = o.

Proof As is well known, PI ® P2 is an orthogonal projector on Xl ® X 2

(equipped with scalar product (2.2» which satisfies

(FI ® F2)(PI ® P 2) = FI ® F2 ,

and
V(PI ® P2) = O.

This proves the theorem. (Note that [5, pp. 62-67]

1m PI ® P2 = Ker Fl ® F2J. = Ker V.)

In the present case of standard interpolation we may and shall assume that

1m V j = Y j

ImFj = Zj

(j = 1,2),

(j = 1,2).

(2.4)

(2.5)

An immediate consequence is 1m F I ® F2 = Zl ® Z2' and we are able to
prove the following theorem.
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THEOREM 2.2. Under assumptions (2.4) and (2.5),

1m V = Zl ® Y2 X Yl ® Z2 X Yl ® Y2 •

Proof Because of (2.4) and (2.5) there exist continuous linear mappings

which satisfy

Tpj : Yj -+ X j

T uj : Zj -+ Xj

Tp;Uj = idx; - P j

Tu;Fj = Pj

(j= 1,2),

(j = 1,2),

(j = 1,2),

(j = 1,2).

By defining the continuous linear mapping

T p ,®P2: Zl ® Y2 X Yl ® Z2 X Yl ® Y2 -+ Xl ® X2 ,

T P, ®P2(XOl , XlO , xu) = T u, ® TP2(XOl) + T F, ® T U2(XlO) + TPI ® T4Xll)

The theorem follows from the first statement.
The second statement implies a decomposition similar to (1.4),

(x E Xl ® X 2), a relation which can be considered as the generalized Taylor
formula of the problem of standard tensor product interpolation (2.3).

THEOREM 2.3. Let

Gj : X j -+ Wj (j = 1,2)

be continuous linear mappings from X j (j = 1,2) onto the (separable, complex)
Hilbert spaces W j (j = 1, 2) satisfying

Ker Gj C Ker Fj (j = 1,2).
Then the tuple

(Xl ® X 2 , 2 1 ® Y2 X Yl ® Z2 X Yl ® Y2 , WI ® W2 ; V, Gl ® GJ (2.6)

defines a problem of optimal tensor product interpolation. Furthermore, let
Qj (j = 1, 2) be the orthogonal projectors of X j (j = 1, 2) with inner products
(1.2) defined by

Ker Qj = Ker Gj (j = 1,2).

Then the spline projector corresponding to (2.6) is given by Q = Ql ® Q2 .
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Proof As in the proof of Theorem 1.3, there exist continuous linear
mappings

(j = 1,2)

which satisfy

(j = 1,2).

We deduce the relations

(GIl 0) G21)(GI 0) G2) = QI 0) Q2'

(GI 0) G2)(QI 0) Q2) = GI 0) G2 ,

which imply

Ker QI 0) Q2 = Ker GI 0) G2 ,

1m QI 0) Q2 = Ker GI @ G2.L.

In view of Theorem 1.3, we now merely have to prove

For every x E Xl ® X2 with

we have

As

it follows that

By Theorem 1.3, the completeness condition for (2.6) holds.

3. OPTIMAL ApPROXIMATION ON LINEAR FUNCTIONALS

We will now study the problem of optimal approximation of linear func
tionals. Therefore we assume L E X*. As in [11] we define the class of admis
sible approximations of L for the problem (X, Y, W; U, G) as

(}t(L) = {EG : E E W*, Ker U C Ker(L - EG)}.

Because LQ = LG-IG E (}t(L), (}t(L) is not empty.
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LEMMA 3.1. For every EG E ot(L) we have

L - EG = KEU

with KEE y* satisfying

II L - EG II = II KE II .
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(3.1)

(3.2)

Proof For (3.1) we refer to [11]. Let ,\ denote the representer (dual) of
L - EG: (L - EG)(x) = (x, '\). Since Ker U = 1m PC Ker(L - EG), we
obtain P'\ = O. Taking into account Ker P = Ker F, this implies F'\ = 0, and
finally, II L - EG II = II u'\ II. On the other hand we have

(L - EG)(x) = (Ux, U'\) = KE(Ux).

The relation 1m U = Y implies

II KE II = II u,\ II = II L - EG II .
This proves (3.2).

Because of (3.1) we have

I L(x) - EG(x) I ~ II KE II . II UX II
(x EX).
This inequality motivates the following definition of optimal approximation
of L. The functional EoG E ot(L) is called an optimal approximation of L
(with respect to G and U) iff II KE II ~ II KE II (EG E ot(L)). Taking into ac-o
count (3.2) this is equivalent to

!I L - EoG II = min II L - EG II.
EGeot(L)

The following theorem shows how to calculate the optimal approximation.

THEOREM 3.1 (Sard [11]). The optimal approximation of L is given by
EoG = LQ (Eo = LG-1).

We now consider the optimal approximation of linear functionals of the
special form L = L1 ® L2 , with L j E Xj * (j = 1,2) for problem (2.6). An
application of Theorems 3.1 and 2.3 yields immediately the following result.

THEOREM 3.2. The optimal approximation of L1 ® L 2 (with respect to
G1 ® G2 and V) is given by

with
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Our final purpose is to derive an explicit expression for the norm

THEOREM 3.3. The norm of the remainder functional L1 ® L2 - L1Ql ®
L2Q2 is given by

II L1 ® L2 - L1Ql ® L2Q2112

= II L1 - L1Ql 11
2 . II L2Q2 11

2+ II L1Ql 11
2 . II L2 - L2Q2112

+ [I L1 - L1Ql 11 2 . II L2 - L2Q2 11 2 .

Proof The proof uses the following

LEMMA 3.2. Let L E X* and A, B be orthogonal projectors on X, which
satisfy either one (and hence both) of the orthogonal relations AB = BA = O.
Then

II LA + LB 11 2
= II LA 11 2 + II LB 11

2.

Proof In general we have (LA + LB)(x) = (x, A7j) + (x, B7j) with 7j the
representer (dual) of L. Since (A7j, B7j) = 0,

This implies the lemma.
If we now consider the decomposition

L1 ® L2 - L1Ql ® L2Q2 = L1 ® L2{(idx1 - Ql) ® Q2 + Ql ® (id x2 - Q2)

+ (idx1 - Ql) ® (id x2 - Q2)}'

our theorem is verified by the validity of the orthogonal relations

((idx1 - Ql) ® Q2)(Ql ® (idx2 - Q2» = 0,

((idx1 - Ql) ® Q2)((idx1 - Ql) ® (id x2 - Q2» = 0,

(Ql ® (id x2 - Q2»((idx1 - Ql) ® (idX2 - Q2» = 0,

and an application of Lemma 3.2 and Theorem 3.1.
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